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What is the relationship between our intuitive sense of number (e.g., when estimating howmanymarbles are in
a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since
we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational
neuroscience has suggested that our representations of approximate number, time, and spatial extent are funda-
mentally linked and constitute a “generalized magnitude system”. But, the shared behavioral and neural signa-
tures between number, time, and space may alternatively be due to similar encoding and decision-making
processes, rather than due to shared domain-general representations. In this study, we investigate the relation-
ship between approximate number and time in a large sample of 6–8 year-old children in Uruguay by examining
how individual differences in the precision of number and time estimation correlate with school mathematics
performance. Over four testing days, each child completed an approximate number discrimination task, an ap-
proximate timediscrimination task, a digit span task, and a large battery of symbolicmath tests.We replicate pre-
vious reports showing that symbolic math abilities correlate with approximate number precision and extend
those findings by showing thatmath abilities also correlate with approximate time precision. But, contrary to ap-
proximate number and time sharing common representations, we find that each of these dimensions uniquely
correlates with formal math: approximate number correlates more strongly with formal math compared to
time and continues to correlate with math even when precision in time and individual differences in working
memory are controlled for. These results suggest that there are important differences in the mental representa-
tions of approximate number and approximate time and further clarify the relationship between quantity repre-
sentations and mathematics.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

What is the source of our intuitions about number? Recent work in
cognitive development has focused on young children's ability to quick-
ly and intuitively represent the number of items in a collection through
the Approximate Number System (ANS; Dehaene, 2009; Halberda &
Feigenson, 2008; Halberda, Mazzocco, & Feigenson, 2008; Halberda &
Odic, 2014; Feigenson, Dehaene, & Spelke, 2004; Odic, Hock, &
Halberda, 2014; Odic, Libertus, Feigenson, & Halberda, 2013). The mul-
timodal ANS provides us with a rough and noisy sense of number, such
as when guessing how many people are sitting in a lecture hall or how
many items are in our shopping basket.

The ANS is characterized by three empirical signatures (Halberda &
Odic, 2014; ; Feigenson et al., 2004). First, discrimination performance
University of British Columbia,
nada.
in the ANS is ratio-dependent (i.e., obeys Weber's law): discriminating
a collection of 10 items from 5 items (a ratio of 2.0) is much easier than
discriminating a collection of 10 items from9 items (a ratio of 1.11). The
precision with which an individual can successfully discriminate diffi-
cult ratios is often quantified through the Weber fraction (w), and the-
oretically corresponds to the amount of noise in the underlying ANS
representations (Cordes, Gallistel, Gelman, & Latham, 2007; Halberda
& Odic, 2014; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Second,
there are large individual differences in ANS precision, and children's
ANS continues to improve from birth onward, peaking around age 30
(Halberda & Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, &
Germine, 2012; Odic, Libertus, Feigenson, & Halberda, 2013; Piazza
et al., 2010). Finally, the ANS has been localized in both the human
brain and in non-human animals to a region of the intraparietal sulcus
(IPS; Dehaene, Piazza, Pinel, & Cohen, 2003; Nieder, 2005, 2012;
Piazza et al., 2010; Roitman, Brannon, & Platt, 2007); physiological
modulations of the IPS can, for example, enhance ANS discrimination
(Cappelletti et al., 2013).
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Researchers have also focused on the relationship between the ANS
and formal mathematical abilities.1 Individual differences in ANS preci-
sion show a small but significant relationship with formal math, includ-
ing in preschoolers (Feigenson, Libertus, & Halberda, 2013; Libertus,
Feigenson, & Halberda, 2011; Starr, Libertus, & Brannon, 2013) and
adults (DeWind & Brannon, 2012; Libertus, Odic, & Halberda, 2012;
Lyons & Beilock, 2011). Temporary modulations of the ANS can also se-
lectively enhance or impair subsequent math performance (Hyde,
Khanum, & Spelke, 2014; Park & Brannon, 2013; Wang, Odic,
Halberda, & Feigenson, under review). Finally, individuals with math
learning disabilities also show impaired ANS precision (Mazzocco,
Feigenson, & Halberda, 2011; Piazza et al., 2010). This work, though
not unchallenged (e.g., De Smedt, Noël, Gilmore, & Ansari, 2013), sug-
gests that our basic intuitions about math may emerge, in part, from a
universal and ontologically ancient core cognitive system, and that in-
tervention methods that improve the ANSmay also help children in ac-
quiring formal math concepts.

But the ANS is not alone in showing these behavioral and neural sig-
natures. Many other dimensions, including surface area, time, density,
weight, brightness, and line length, also obey Weber's law (Cantlon,
Platt, & Brannon, 2009; Cheng, Srinivasan, & Zhang, 1999; Feigenson,
2007; Gescheider, 1997; Meck & Church, 1983; Möhring, Libertus, &
Bertin, 2012; Stone & Bosley, 1965), develop with age (Brannon, Lutz,
& Cordes, 2006; Droit-Volet, Clément, & Fayol, 2008; Odic, Le Corre, &
Halberda, 2015; Odic et al., 2013), and are localized in the IPS
(Cantlon et al., 2009; Castelli, Glaser, & Butterworth, 2006; Pinel,
Piazza, Le Bihan, & Dehaene, 2004; Tudusciuc & Nieder, 2007). For ex-
ample, transcranial noise stimulation of the IPSmodulates both number
and time discrimination (Cappelletti et al., 2013), and 6-month-old
infant'sWeber fractions for surface area discrimination appear identical
to Weber fractions for number and time discrimination (Brannon et al.,
2006; Feigenson, 2007). These similarities between distinct dimensions
have led many researchers to suggest that number, time, and space are
all represented by common mechanisms— a domain-general “general-
ized magnitude system” (Bueti & Walsh, 2009; Cantlon et al., 2009;
Lourenco & Longo, 2010; Vicario, 2013; Walsh, 2003). Additional evi-
dence for the generalized magnitude system comes from correlations
of Weber fractions across dimensions (e.g., time and number; Meck &
Church, 1983, but see Droit-Volet et al., 2008), and from persistent con-
gruency and interference effects between quantities, whereby manipu-
lation of one dimension affects discrimination performance of another
(Barth, 2008; Dakin, Tibber, Greenwood, Kingdom, & Morgan, 2011;
Gebuis & Reynvoet, 2012; Hurewitz, Papafragou, Gleitman, & Gelman,
2006; Leibovich & Henik, 2013; Lourenco & Longo, 2010; Szucs, Nobes,
Devine, Gabriel, & Gebuis, 2013; Wood, Willmes, Nuerk, & Fischer,
2008).

Although researchers have frequently invoked the generalizedmag-
nitude system as an explanation for the behavioral and neural common-
alities among quantity representations, it remains unclear what the
shared mechanism between number and other dimensions might be.
There are at least three (non-mutually exclusive) possibilities. First,
quantity representations could share low-level sensory encoding pro-
cesses. Dakin et al. (2011), for example, suggest that the number and
density are both encoded through low spatial-frequency filters; hence,
modulations of density (and thus of low spatial-frequency) will simul-
taneously impact number discrimination. Second, various dimensions
might all be represented on an identical domain-general quantity
scale and by identical sets of neurons that code for “more” or “less” of
any and every dimension (Bueti & Walsh, 2009; Lourenco & Longo,
2010; Tudusciuc & Nieder, 2007); in this case, representations for,
e.g., time and number, will show identical Weber fractions, identical
1 In this paper, we refer to “formal” math in the sense of symbolic, abstract, school-
taught mathematics, rather than differentiating between more informal math skills, such
as addition and counting, and more formal math skills, such as word problems (e.g., see
Libertus et al., 2013).
individual and developmental differences, and will be equivalently im-
pacted by any modulation of the IPS. Finally, different dimensions may
share common decision making or comparison computations, such as
determining a threshold before the response is initiated; as a result,
quantity representationsmay compete for behavioral responses and in-
terfere with one another (DeWind & Brannon, 2012; Hurewitz et al.,
2006; Van Opstal, Gevers, De Moor, & Verguts, 2008) and bottlenecks
on attentional, memory, or decision making processes may result in
similar Weber fractions across dimensions. Droit-Volet et al. (2008),
for example, find that time and number Weber fractions only correlate
when both dimensions are presented sequentially, suggesting that at-
tentional and memory processes may be responsible for their
correlation.

The existing evidence has not determined the best explanation for
the common behavioral and neural signatures between number, time,
and space (though most researchers seem to prefer the shared repre-
sentations account). Recently, an increasing number of studies have
attempted to dissociate quantity representations by examining how
they relate to other cognitive abilities, such as affect (Droit-Volet,
2013; Young & Cordes, 2013) or formal mathematics (DeWind &
Brannon, 2012; Lourenco, Bonny, Fernandez, & Rao, 2012). If, for exam-
ple, the ANS correlates with formal math independently from non-
numeric dimensions such as surface area, thenwewould have evidence
for an important degree of independence between these dimensions.
DeWind and Brannon (2012) recently found that while number and
line-length discrimination correlate in precision in adults, only number
correlates with formal math (as assessed by SAT scores). Similarly,
Lourenco et al. (2012) found that while number and cumulative surface
area correlate in precision amongst adults, individual differences in the
ANS uniquely correlate with arithmetic math problems, while individu-
al differences in cumulative area precision uniquely correlate with geo-
metric math problems. Combined, this work suggests important
distinctions in the representations of number and spatial extent and
their relationship to formalmath, and further implies that the common-
ality between these dimensions is unlikely to be due to both number
and spatial extent being represented on an identical scale.

A similar kind of approach has been used to differentiate the ANS
from approximate time perception. Time perception provides a useful
case-study because its relationship to the ANS is still very actively de-
bated. Meck and Church (1983) famously proposed that both time
and number are encoded by an accumulating pacemaker mechanism,
and found that amphetamine administration equally affects time and
number perception in rats. Furthermore, affective stimuli, such as sad
or happy faces, appear to impact both time and number equally
(Droit-Volet, 2013), there are known shared neural substrates for time
and number perception (Dormal, Dormal, Joassin, & Pesenti, 2012),
and these dimensions show mapping and interference effects (Bueti &
Walsh, 2009; Müller & Schwarz, 2008; Oliveri et al., 2008). Focusing
on children and adults with math learning disabilities, previous work
has shown mixed results in dissociating time from number perception.
For example, Cappelletti, Freeman, and Butterworth (2011) find that
time perception is not affected in adults diagnosed with dyscalculia.
On the other hand, both Hurks and Loosbroek (2012) and Vicario,
Rappo, Pepi, Pavan, and Martino (2012) find that children with math
learning disabilities show abnormal time estimation and production.
Combined, the existing work does not conclusively show evidence for
or against time and number being part of a single generalized magni-
tude system.

The existing work on time, number, and their relationship to formal
mathematics leaves open the possibility that quantity representations
diverge and differentiate with development, especially as children ac-
quire formalmath concepts frompreschool onward. Additionally, previ-
ous work has only tested children with math learning disabilities and
used small sample sizes. Here, we examine the relationship between
the ANS, time perception, and a series of formal math tests in a large
sample of children tested at schools in Uruguay. By examining the
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relationship between ANS, time discrimination, andmath performance,
we ask whether time and number share a common relationship with
formal mathematics performance or two distinct relationships. If time
and number pattern together, this would be strong evidence for them
sharing a common representational resource. If they pattern separately
(e.g., if number correlates more strongly with formal math and con-
tinues to correlate even after time performance is controlled for), this
would be strong evidence for time and number relying on distinct
representations. In short, by investigating the relationships between
approximate number, approximate time and formal mathematics we
can gain insight into the representational resources that support each
of these abilities.

2. Methods

2.1. Participants

The present studywas performed as part of Plan Ceibal, a Uruguayan
initiative whereby each student in the public education system receives
a technological device (e.g., computer and Tablet, etc.) for use in the
classroom. The plan promotes digital inclusion and creativity in learn-
ing. We had access to 10 different schools and 31 different classrooms
in Montevideo, the Uruguayan capital and its largest city. Within each
classroom, each child received a tablet (described below) and, on the
days that they were in the classroom and willing, participated in up to
ten days of games and/or assessments. For the purposes of this paper,
we only report data from the first four days (data from other days will
appear in a series of other publications that address questions beyond
number and time).

In total, we tested 503 unique first graders (Mean Age= 7.25; SD=
0.46; Age Range = 6.42–8.76). However, due to the opportunistic sam-
pling, not all children completed all of the games.We include in our cur-
rent sample only children who completed both the ANS and time
discrimination games (N = 244; Mean Age = 7.26; SD = 0.47; Age
Range = 6.42–8.71; 135 girls and 109 boys); analyses reported in the
Results section show no significant differences between children who
completed and did not complete both of these two games. Table 1 re-
ports the Ns across the different formal math games that were used
for all our statistical analyses. All children spoke Spanish as their first
language and all tasks were administered in Spanish.

2.2. General procedure and apparatus

All testing was done in the child's classroom by trained researchers
who followed a written protocol. In all, we tested children on seven
games across four days: the Prueba Uruguaya de Matemática (PUMA)
Table 1
The pairwise correlations between all the tested variables. Stars indicate significance at p b .05

Discrimination tasks Math tasks

ANS Time PUMA Timed arithme

ANS
(n = 244)

1.0 .26* .39* .37*

Time
(n = 244)

– 1.0. .31* .25*

PUMA
(n = 233)

– – 1.0 .57*

Timed arithmetic
(n = 153)

– – – 1.0

Symbolic magnitude
(n = 170)

– – – –

Symbolic ordinal
(n = 119)

– – – –

Digit span
(n = 183)

– – – –
(days 1 and 2), time discrimination (day 1), digit span (day 2), timed ar-
ithmetic (day 3), symbolic magnitude judgment (day 3), symbolic ordi-
nal judgment (day 3), and the ANS discrimination game (day 4). These
tasks are described in more detail below.

The games were played online in Spanish on a 7.6″ × 4.65″ × 0.39″
XO Tablet running the Android 4.2 (Jelly Bean) with a 7″ screen size.
XO Tablets are hand-held, touch-responsive Tablets specifically de-
signed for children aged 4–14 (see Fig. 1). Each participant had their
own XO Tablet that they used throughout the duration of testing. All
games were completely computerized and were developed using
JavaScript, PHP, SQL, and JQuery. For games that involved sound, we
provided each child with headphones to wear.

The Tablet was locked with game-specific passwords that children
could not begin playing without the trained researcher informing
them of the password. On the day of testing, the researcher would
read a pre-written script explaining to children the games for that day
and encouraging them to do their best. Games were explained on a
blackboard to the whole class. Then, for each game, children were
instructed to type in a specific password that would trigger the game.
In this way, each game stayed paused until the researcher fully read
the instructions and explained the game on the blackboard, assuring
that children would not being playing the games early. While children
played, the researcher walked around the classroom and provided any
assistance.
2.3. ANS discrimination (Panamath)

Children's ANS precision was assessed via the standardized
Panamath task (Halberda & Ly, 2015) on the fourth day. As illustrated
in Fig. 1, children were shown two empty rectangles (a yellow one on
the left, and a blue one on the right); subsequently, yellow dots ap-
peared in the yellow rectangle and blue dots in the blue rectangle. The
dots disappeared after 1600 ms. Children had to decide which side
hadmore dots and indicated their response by tapping on the appropri-
ate rectangle. We presented five ratios: 1.17 (e.g., 7 blue vs. 6 yellow
dots), 1.2, 1.5, 2.0, and 3.0. The number of dots within each rectangle
was always between 4 and 24. To control for surface area, half of the tri-
als had cumulative surface area congruent with the number of dots
(i.e., cumulative area and number gave identical answers) and half the
trials were incongruent with the number of dots (i.e., cumulative area
gave the opposite answer to that of number).

The first three trials acted as practice and were very easy. Children
were allowed to play for 6 min. During the task, children were given
feedback (a positive “ding!” sound for correct or an “err!” sound for in-
correct answers). The dependent variable was percent correct across all
completed trials.
.

Working memory

tic Symbolic magnitude Symbolic ordinal
Digit span

.51* .44* .21*

.22* .14 .29*

.39* .49* .35*

.44* .47* .35*

1.0 .46* .22*

– 1.0 .37*

– – 1.0



Fig. 1.An illustration of the XO Tablet used for all the seven tasks, the ANS discrimination task, the time discrimination task, and the digit span task. In the time discrimination task, the two
monsterswould open theirmouth andmake a signing sound. In the digit span task, the childwould have to re-create the set-size (here, set-size two is shown) after thenumbers disappear.
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2.4. Time discrimination

Children's time precision was assessed via the time discrimination
game,which children played on thefirst day. As illustrated in Fig. 1, chil-
drenwere shown twomonsters on a screen: a green one on the left and
a purple oneon the right. On each trial, eachmonsterwould take its turn
making a singing-like sound for a certain amount of time. Toprovide ad-
ditional visual cues, each monster would open its mouth while singing
and put its hand over its mouth for a second once it was done. Children
had to touch the monster that sang longer.

The first five trials acted as practice and were very easy. Children
were presented with eight ratios: 1.20 (e.g., 1200 ms sound vs.
1000 ms sound), 1.25, 1.50, 1.60, 2.00, 2.40, 2.50, and 3.00. On half the
trials, the left monster made sounds first. The singing sound also varied
from trial to trial. Children were given feedback (a positive “ding!”
sound for correct or an “err!” sound for incorrect answers). The depen-
dent variable was percent correct across all completed trials.

2.5. Digit-span

To assess each child's working memory capacity, we administered a
child-friendly version of the classic digit-span task (Baddeley, 1992). On
each trial, children touched the screen to reveal between 1 and 5 cards
(set-size) with a single-digit Arabic digit on each (see Fig. 1). The cards
were shown simultaneously and stayed face-up on the screen for 1 s per
card (i.e., three cards stayed face-up for 3 s, five cards for 5 s, etc.). After
this time period, the cards turned face-down. Subsequently, blank cards
appeared underneath the face-down cards and the child had to input
the correct identity for each card in the correct order. Trials on which
children got the numbers correct but in the wrong order were counted
as incorrect. To determine each child's digit-span, we used a staircase
method: each child started with set-size of 1, and the set-size increased
by one every time the child got two trials correct; if the child got a trial
wrong, the set-size would decrease by 1. The span is determined by the
maximum set-size that the child successfully completed. The task was
limited to 4 min.

2.6. Formalmath assessment #1: PruebaUruguaya deMatemática (PUMA)

The PUMAwasused to test a broad set ofmath skills through a series
of mini-games, including number symbol knowledge, Arabic number
ordering, number composition and decomposition, number line place-
ment, and basic word problems. These were tested within the PUMA
using eight different mini-games across two testing days. On each day,
children were given up to 10 min total to complete as many questions
(intermixed from various mini-games) as they could; if they spent
more than 1 min on any single question, the game automatically ad-
vanced to the next one. All children did the trials in the same order.
Children received instructions verbally in their headphones via the
Tablet after typing in the game-specific password given them by the
researcher.

Videos outlining each of the eight tasks can be found (in Spanish)
online (http://www.ceibal.psico.edu.uy/2013/preparacion/prueba-de-
evaluacion-de-matematica/). Examples of three of the mini-games are
shown in Fig. 2.

In the first mini-game, children had a set of cards with numbers on
the screen (1, 2, 5, 10, 20, 50, and 100). On each trial, the on-screen
game character desired a target number (written on the screen), and chil-
dren had to drag and add several cards to a workspace in order to match
the target number (targets were 10, 8, 20, 34, 52, and 100). In the second
mini-game children performed the reverse of this challenge— i.e., a game
character on-screen showed a collection of cards (e.g., 50, 1, 1, 1) and the
child had to select the correct number for the total array from among 3
options (e.g., 53). In the third mini-game (“base ten”, Fig. 2a), children
had to add cards (each with a value of 10) to match a target value
(e.g., 100). Target values were 100, 60, 120, 80, 40, and 30. The fourth
mini-game tested number line ordering (Fig. 2b). Children were
shown a train with a number line and some values missing. Children
then had to select a card with a number and drag it into the missing
spot (the targets were 5, 8, 10, 12, 15, 18, and 20). The fifth mini-
game tested verbal counting and cardinality. Children were shown
a character and some dots and they had to count the number of
dots. They then had to move the character along a line to match the
number of the dots (targets were 16, 12, 20, and 9). The sixth mini-
game tested number order. Children were shown numbers 10–1 in
a scrambled order, and had to arrange the cards in decreasing order
by dragging them from the bottom of the screen to their correct po-
sition on the top. In the seventh mini-game, children saw an empty
number line with a single anchor number (either 5, 7, 6, 3, 5, or 8),
and had to drag two numbers onto the appropriate position of the
line given the anchor (e.g., place 4 and 9 on the line relative to the an-
chor of 5). Targets were 4–9, 1–9, 4–10, 5–9, 1–7, or 1–6. In the
eighth mini-game, testing basic word problems, children saw toys

http://www.ceibal.psico.edu.uy/2013/preparacion/pruebaevaluacioneatematica/
http://www.ceibal.psico.edu.uy/2013/preparacion/pruebaevaluacioneatematica/


Fig. 2.An illustration of the four FormalMath tasks. The PUMA task is comprised of eightmini-games, ofwhich three are shownon the left: (a) adding game, (b) number line ordering, and
(c) word problems. Details on each of the eight games are in-text.
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on the screen with labeled prices (Fig. 2c). Three math problems in-
dicated the toys to select: (1) “Select two toys totalling $90”. (2) “If
the girl only has $90, which toy can she not buy?” (3) “Matthew
paid $80 and had $2 in chance. What did he buy?”

The dependent measure was percent correct across all completed
questions. The PUMA was designed as an overall assessment of math
ability, and preliminary analyses revealed insufficient numbers of trials
to investigate each game individually. As a result, we combined the per-
cent correct across the eight mini-games; as shown in the Results sec-
tion, this single score showed a good, normal distribution of scores.
2.7. Formal math assessment #2: Timed arithmetic

The timed arithmetic game was played the third day and was
used to assess children's addition and subtraction abilities. As illus-
trated in Fig. 2, children were shown single Arabic digit subtraction
and addition problems (e.g., 4 + 2= ?) and had to type their answer
on a linear number pad. Problems always involved single-digit oper-
ations, but could include decade breaks (i.e., going above 10, 20,
etc.). All children saw an identical order of trials. When done, chil-
dren pressed a green checkmark to register the answer or an eraser
to clear the answer and change it. The first two trials were consid-
ered practice. Children were given feedback (a positive “ding!”
sound for correct or an “err!” sound for incorrect answers). No
time limit was enforced for each arithmetic problem. The dependent
variable was percent correct across all completed questions.
2.8. Formal math assessment #3: Symbolic magnitude judgment

The symbolic magnitude judgment taskwas also played on the third
day and was used to assess children's knowledge of Arabic digits. As il-
lustrated in Fig. 2, children were shown two digits (one on each side of
the screen)within colored rectangles andhad to tap on the one thatwas
numerically larger. The lowest number presentedwas 1, and the highest
number presented was 21. All children saw the same order of trials.
Children were allowed to play for 4 min, but could spend as much
time as they needed on each problem. The first two trials were consid-
ered practice. Children were given feedback (a positive “ding!” sound
for correct or an “err!” sound for incorrect answers). The dependent
variable was percent correct across all completed questions.
2.9. Formal math assessment #4: Symbolic ordinal judgment

The symbolic ordinal judgment game was also played on the third
day and assessed children's knowledge of number order. As shown in
Fig. 2, children were shown three single-digit numbers on the
screen and had to decide if the numbers were in increasing order
(e.g., 3–5–8) or not (e.g., 3–8–5). If the children thought the numbers
were increasing, they had to press an upward facing green arrow; if
they thought the numbers were not increasing they had to press a red
X. The first three trials were considered practice. All children saw the
identical order of trials. Children could play for up to 4 min, but as
long as needed on each trial. Children were given feedback (a positive
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“ding!” sound for correct or an “err!” sound for incorrect answers). The
dependent variable was percent correct across all completed questions.

3. Results

Because all testing occurred in the school setting over four days,
many children did not complete all seven of the tasks (i.e., ANS discrim-
ination, time discrimination, digit span, and the four formal math as-
sessments). Our sample sizes and pairwise correlations for each of the
tasks are presented in Table 1.

To make sure that our attrition was random and not because some
children were doing poorly on the games and subsequently dropped
out, we first examined the scores of children who completed only the
ANS discrimination (on day 4) or only the time discrimination game
(on day 1) and compared them to children who completed both tasks.
We found no significant difference in ANS discrimination performance
between children who completed only the ANS discrimination game
(M = 0.73, SD = 0.11, N = 151) and those who completed both the
time discrimination and ANS discrimination games (M = 0.74, SD =
0.09, N = 251; t(400) =−0.54; p= 0.59). Similarly, there was no dif-
ference in time discrimination performance between children who
completed only the time discrimination game (M = 0.68, SD = 0.20,
N = 162) and those who completed both the ANS discrimination and
time discrimination games (M = 0.68, SD = 0.20, N = 251;
t(411) = −0.12; p = 0.91).

We next tested whether performance on both ANS and time dis-
crimination obeyed Weber's law (i.e., was ratio-dependent). As shown
in Fig. 3, a one-way Repeated-Measures ANOVA (Ratios: 1.17, 1.25,
1.50, 2.00, 3.00) over ANS discrimination percent correct showed a sig-
nificant effect of Ratio (F(4972)= 347.82, p b .001) and a normal distri-
bution of scores. And, as also shown in Fig. 3, a one-way Repeated-
Measures ANOVA (Ratios: 1.20, 1.25, 1.50, 1.60, 2.00, 2.40, 2.50, and
3.00) over time discrimination percent correct showed a main effect
of Ratio (F(7,1050) = 25.93, p b .001), with a slightly left-skewed
Fig. 3. Performance on the ANS discrimination and time discrimination tasks, averaged across a
and normal distributions of scores (the curve fits are from a psychophysical model of Halberda
the correlation between ANS and time when controlling for digit span.
distribution of scores. Additionally, we found that ANS discrimination
performance (M = 73.7%, SD = 9.37%) was significantly better than
time discrimination performance (M = 68.83%, SD = 9.37%;
t(243) = 3.89; p b .001), consistent with previous work (Droit-Volet
et al., 2008). We found no significant relationship between age and
ANS discrimination (r(233) = −.07; p = .29) or between age and
time discrimination (r(233) = −.01; p = .87), probably due to our
truncated age range.

Consistent with previous work, we found a weak but significant cor-
relation between ANS discrimination and time discrimination perfor-
mance (r(242) = .26; p b .001; Fig. 3). As discussed in the Introduction,
this correlation could be due to shared encoding, identical domain-
general representations, or decision-making components. To further
understand this correlation, we investigated the relationship of both
ANS discrimination and time discrimination to individual differences in
digit span — the classic measure of working memory performance. Digit
span performance correlated with both ANS discrimination (r(182) =
.21; p b .01), and with time discrimination performance (r(182) = .29;
p b .001), suggesting that working memory contributes to individual dif-
ferences in each task. But– consistentwith the idea that number and time
only share decision-making components –we failed to find a correlation
betweenANS and time discriminationwhen digit spanwas controlled for
(r(179) = .10; p= .16; Fig. 3). In other words, the relationship between
the ANS and time in our sample appears to be largely accounted for by
shared working memory (see also Droit-Volet & Wearden, 2001;
Genovesio, Tsujimoto, & Wise, 2012). However, as it is difficult to draw
conclusions from null results, we next turn to the relationship between
time, number and our formal math assessments.

Each of the individual math tasks ranged in performance from 0 to
100%, but chance performance was different for each task (e.g., for
PUMA and timed arithmetic, chancewas less than 5%, while for symbol-
ic magnitude and symbolic ordinal was 50%). As shown in Fig. 4, most of
the individualmath taskswere normally distributed,with the exception
of the symbolic magnitude task, which showed a strong negative skew
ll children and as a histogram. Results from both tasks show clear ratio-dependent effects
& Feigenson, 2008). On the right, the correlation between ANS and time performance, and



Fig. 4. Histograms for each of the four math tasks (PUMA, timed arithmetic, symbolic magnitude, and symbolic ordinal).
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and was easier than the other three tasks. The average performance on
the PUMA task was 50.5% (SE = 1.4%), on the timed arithmetic task
53.1% (SE = 2.0%), on the symbolic magnitude task 80.8% (SE = 1.5%),
and on the symbolic ordinal task 66.2% (SE = 1.6%). These distributions
show that children understood and engaged with all of the math tasks.

Because of the strong correlations between the fourmath tasks and in
order to maximize our sample size, we calculated a single combined For-
mal Math Score. To do so, we first normalized performance on each indi-
vidualmath task by re-computing each child's score as a Z-Score. Then, to
calculate the combined and standardized Formal Math Score, we aver-
aged these individual Z-Scores across all children, ignoring the scores
for the tasks they did not complete. This gave us a final sample size of
244 individual children for whom we had a combined Formal Math
Score, ANS discrimination and time discrimination. As shown in Fig. 5a,
the Formal Math Score distribution was normal with a mean of −0.05
(SD = 0.88). We found no correlation between age and the Formal
Math Score (r(232) = −.03; p = .69), probably due to our truncated
age range.

Next,we turn to themain question of interest—what is the relation-
ship between the ANS discrimination and the Formal Math Score and is
Fig. 5. (a)Histogramof the combined FormalMath Score; (b) The correlation between the Form
time discrimination task.
it in any way different from the relationship between time discrimina-
tion and the Formal Math Score? We found a moderate correlation
between ANS discrimination performance and the Formal Math
Score (r(242) = .51; p b .001; Fig. 5b) and a weak correlation between
time discrimination performance and the Formal Math Score
(r(242)= .29; p b .001; Fig. 5c). This relationship held for each of the in-
dividual math tests that comprised the combined Formal Math Score,
with the exception of symbolic ordinal task, which did not correlate
with time discrimination (see Table 2). We also found that the correla-
tion between ANS discrimination and the FormalMath Scorewas signif-
icantly higher than the correlation between time discrimination and the
Formal Math Score (Z= 3.22; p b .001). This difference could, at least in
part, be due to the lower reliability of the timediscrimination scores and
does not by itself suggest independence between time and number.

To further understand these results, we performed a set of partial
correlations; if time and number are both represented on a common
scale by common Gaussian tuning curves, we should find that control-
ling for one should remove the correlation with the Formal Math
Score. However, contrary to this, we found that ANS discrimination per-
formance still correlated with the Formal Math Score, even when the
alMath Score and theANS task; (c) The correlation between the FormalMath Score and the



Table 2
The data from the different tasks, alongside each task's correlation with ANS discrimination performance, with the ANS discrimination performance when controlling for time
discrimination, correlation with time discrimination performance, and correlation with time discrimination performance when controlling for ANS discrimination. Stars indicate signifi-
cance (p b .05).

N Average (SE)
ANS discrimination Time discrimination

Correlation Controlling for time Correlation Controlling for ANS

ANS discrimination 244 73.4 (0.6) – – .26* –
Time discrimination 244 68.8 (1.3) .26* – – –
Formal Math Score 244 −0.05 (0.06) .51* .47* .29* .19*
PUMA 233 50.5 (1.4) .39* .33* .31* .23*
Timed arithmetic 153 53.1 (2.0) .37* .34* .25* .18*
Symbolic magnitude 170 80.8 (1.5) .51* .49* .22* .14
Symbolic ordinal 119 66.2 (1.6) .44* .42* .14 .08

24 D. Odic et al. / Acta Psychologica 163 (2016) 17–26
variability in time discrimination was entirely controlled for (r(242) =
.47; p b .001).We also found the converse— time discrimination perfor-
mance still correlated with the Formal Math Score, even when the var-
iability in ANS discrimination was entirely controlled for (r(242)= .19;
p b .05). These results held true for all of the individual formal math
games, with the exception that symbolic magnitude no longer correlat-
ed with time discriminationwhen ANSwas controlled for (see Table 2).
Hence, each dimension has a unique correlation with Formal Math
Score.

A potential criticism, however, is that the differences captured by the
partial correlations between ANS, time, and formal math tasks are not
due to independent representations of time and number, but due to dif-
ferences between the two discrimination tasks. Specifically, because
stimuli in the time discrimination task are, unlike the ANS discrimina-
tion task, presented sequentially, performance in this task will highly
depend on individual differences in working memory (Droit-Volet &
Wearden, 2001). Thus, a correlation between time discrimination and
the Formal Math Score could remain significant even if the ANS forms
a domain-general magnitude system with time, since the leftover vari-
ance could be due to differentworkingmemory demands of the sequen-
tial vs. simultaneous tasks.

To investigate the possibility that working memory can account for
the correlation between time discrimination and the Formal Math
Score, we further investigated individual differences in the digit span
task. If ANS and time comprise a generalized magnitude system and
the significant partial correlation between time discrimination and the
Formal Math Score is due to working memory demands, we should
find that further controlling for digit span performance should eradicate
this correlation. Contrary to this prediction, however, we found that time
continued to weakly correlate with Formal Math even when both ANS
and digit span were partialled out (Fig. 6a; r(178) = .18; p b .05).
Fig. 6. (a) Partial correlation between the ANS and the FormalMath Score (controlling for digit
trolling for digit span and ANS). The units are standardized residuals in both.
Similarly, the ANS continued to moderately correlate with formal math
even when both time and digit span were partialled out (Fig. 6b;
r(178) = .43; p b .001). In other words, ANS and time uniquely and in-
dependently correlatedwith formalmath performance, evenwhen indi-
vidual differences in working memory were accounted for.

4. General discussion

While previous work has largely focused on the commonalities be-
tween time and number discrimination, including shared encoding
and similar Weber fractions, it has remained unclear just how similar
these representations really are. Under many popular accounts of the
generalized magnitude system, time and number are represented on
an identical, domain-general scale that codes for “more” or “less” of
any quantity; under extreme version of such a view, time and number
should be near-perfectly correlated and show an identical relationship
to other cognitive abilities, including formal mathematics. Contrary to
this account, however, ourfindings show that the ANS and time percep-
tion do not correlate in preschoolers when individual differences in
working memory are controlled for, and that ANS and time uniquely
and independently correlate with school math abilities. Furthermore,
the independence between ANS and time perception is unlikely to be
caused by task-related differences (e.g., by time being presented se-
quentially), as ANS and time continue to correlate with formal math
performance when working memory is controlled for.

Our results are most consistent with the idea that the scale that
codes approximate number is distinct from the scale that codes for ap-
proximate time. In other words, while time and number might share
encoding and decision-making components – including working mem-
ory demands – the evidence presented here suggests that they do not
share identical, domain-general representations. Thus, our results
span and time); (b) Partial correlation between the time and the Formal Math Score (con-
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suggest that approximatemagnitude representations encompass a con-
stellation of abilities rather than a single system. That is, while time and
number discrimination are related, and they each relate to school math
ability, these relations are varied and textured rather than identical or
reducible to a single construct. This is consistent with other findings in
the literature that have found differences in the neural localization for
time and number (Dormal, Andres, & Pesenti, 2008), and findings that
suggest that the interference and mapping effects between time and
number are the product of a metaphorical mapping between them,
rather than shared resources (Bottini & Casasanto, 2013; Vicario &
Martino, 2010). More broadly, they are consistent with recent critiques
of the generalizedmagnitude system, includingwork dissociating num-
ber and surface area (Odic et al., 2013), and work suggesting that many
of the commonalities between quantity dimensions may stem from
shared decision-making components (Van Opstal et al., 2008; Van
Opstal & Verguts, 2013).

Our findings are broadly consistent with previous work on the ANS,
non-numeric dimensions and formal math. For example, much like in
the case of spatial extent in adults (DeWind & Brannon, 2012;
Lourenco et al., 2012),wefind that theANSuniquely correlateswith for-
mal math compared to time. Similarly, our results are consistent with
the finding that adults with dyscalculia have unimpaired time percep-
tion (Cappelletti et al., 2011). Our data also extend this work by demon-
strating a dissociation between number and time in children, removing
the possibility that this division occur only after years of experience and
formal math education.

At the same time, our results are not entirely consistent with some
previous work showing that time estimation and production are im-
paired in children with math learning disabilities (Hurks & Loosbroek,
2012; Vicario et al., 2012). One possibility is that the specific nature of
the tasks may be responsible: in time estimation and production tasks,
participants are asked to assign a numeric value to a duration, or are
given a numeric value and are asked to produce a duration of that
length. In both of these situations, children must use their knowledge
of numbers to perform a task about time. Hence, if their math learning
disability had impacted their number knowledge broadly, then we
might expect them to be impaired in any task that used numbers, and
numerical magnitudes, as stimuli (Cappelletti et al., 2011; Hurks &
Loosbroek, 2012; Vicario & Martino, 2010). Furthermore, Vicario et al.
(2012) failed to find a correlation between time performance and
tests of formal math in their sample; however, without a positive corre-
lation between formal math and the ANS (which they did not test) it is
hard to interpret this null result.

Perhaps surprisingly, we found a robust and independent correla-
tion between formal math and the time discrimination performance,
even when ANS discrimination performance was controlled for.
Although this correlationwas consistently weaker than the correlations
with the ANS (across the Formal Math Score and the four individual
games), it still remains to be explained: why are formal math and
time discrimination performance correlated? One possibility is that
this correlation is an artifact of a third factor, such as children's ability
to pay attention or their executive functions. This, however, seems un-
likely given that time continued to correlate with formal math even
when digit span performancewas controlled for. Alternatively, one's in-
tuitive sense of time may contribute to only certain math abilities
(e.g., perhaps providing an analogy to concepts such as multiplication).
Future work could investigate whether temporary modulation of time
precision has an impact on formal math performance (temporary mod-
ulations of the ANS have been shown to selectively impact subsequent
math tasks; Wang et al., under review).

In conclusion, the work presented here demonstrates a unique
relationship between formal mathematics, the ANS, and time discrimi-
nation performance. This suggests that the commonalities between
the ANS and time are not due to shared representations on a domain-
general “more/less” scale, but more likely due to shared encoding or
decision-making processes; and that time and ANS may each
independently relate to formal math abilities. This helps to clarify the
nature of the theorized generalized-magnitude system and has implica-
tions for future work on mathematics interventions.
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